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On Nonlocal Monotone Difference Schemes 
for Scalar Conservation Laws* 

By Bradley J. Lucier 

Abstract. We provide error analyses for explicit, implicit, and semi-implicit monotone finite- 
difference schemes on uniform meshes with nonlocal numerical fluxes. We are motivated by 
finite-difference discretizations of certain long-wave (Sobolev) regularizations of the conserva- 
tion laws that explicitly add a dispersive term as well as a nonlinear dissipative term. We also 
develop certain relationships between dispersion and stability in finite-difference schemes. 
Specifically, we find that discretization and explicit dispersion have identical effects on the 
amount of artificial dissipation necessary for stability. 

1. Introduction. We analyze a class of monotone numerical methods for the 
approximate solution of the hyperbolic conservation laws 

(C) ut +f X =u(u) = , E R, t e (0, T], 

u(x,0) = uO(x), x E R. 

We give convergence results with error estimates for explicit, implicit, and semi-im- 
plicit finite-difference schemes on uniform meshes with nonlocal numerical fluxes. 
The motivating examples for these methods are finite-difference discretizations of a 
Sobolev-type regularization of (C), 

(S) Ut + f (U).,- Vg(U) XX - 2uxxt = 0. 

Equation (S), which regularizes (C) by adding a term simulating dispersive effects 
(-a 2u. ) as well as dissipation (-Pg(u)xx), has been studied in [20] as a singular 
perturbation of (C); one can find other references there. For example, the implicit 
difference scheme that we consider is 

(1.1) dtUi" + dxf(Un+l)2-vd~g(Un+l)i - a2ddUJn = 0, i E Z, n > 0, 
where dXW71 = (W7+ - W.1)/2h, dXWi = (W7- -2W'n ? W.L)/h2, and dtW , 
= (W1"+4 - Wi')/At, for any mesh function W. The positive parameters h and At 
are the mesh size and the time step, respectively. Such methods are similar to 
finite-difference and finite-element schemes introduced by Douglas et al. [8], and to 
artificial time methods, introduced by Jameson and Baker [14], for finding steady- 
state solutions of the Euler equations. 
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In Section 3, we study the stability in L1(Z) of the above difference scheme for 
various values of a and v. This exercise illuminates the relationship between 
dispersion and stability of several finite-difference schemes for (C). Specifically, we 
find that discretization and explicit dispersion have identical effects on the amount 
of artificial dissipation necessary for stability. 

It is well known that classical smooth solutions of (C) do not exist in general, and 
that weak solutions, satisfying the equation 

(1.2) f (uaf + f(u)ox) dxdt + uo(x)4(x,0) dx = O 
Rx[O, t] 

for all continuously differentiable 4 with support in R x (-so, T], are not unique 
(see, for example, [26]). Existence and uniqueness results may be provided for certain 
classes of weak solutions of (C) through the prescription of an extra condition, 
known as an entropy condition. The theory for solutions of (C) used in this paper is 
expressed in the following theorem. 

THEOREM 1.1 [KRUZHKOV]. If f is locally Lipschitz continuous, then for any 
U( E BV(R) and for any T > 0 there is a unique u E BV(R X [0, T]) C) C0([O, T], 
Ll0( (R)) such that u satisfies (1.2) and, in addition, satisfies the entropy condition: For 
all 0 E CO'(R X [0, T]), with 4 ?0, and for all c E R, 

(1.3) [J Ilu - clot, + sgn(u - c)(f (u) - f (c)),Oj A dt >, O. 
RX [OT] 

(This theorem has somewhat weaker hypotheses and a stronger conclusion than 
Kruzhkov presented in [15]; it may be proved using techniques found in [20] and 
Kuznetsov's approximation theory presented below.) 

Kuznetsov [16] proposed a general theory of approximation for solutions of (C) in 
an arbitrary number of spatial dimensions. We formulate the one-dimensional 
version as follows. 

THEOREM 1.2. Let u be an entropy solution of (C) with uo e BV(R), and let 
v: R + -- L'o(R) have left and right limits for any t, and be right continuous. Pick a 
positive, symmetric function q(4) with support in [-1, 1] and integral 1, positive 
numbers E and Eo, and let 

(x, t) t 1 e e 

Define the "Kruzhkov form" 

Aete = || |(x1v tk ) - U(X co t )| WWI(x - xi, to - t') 

+sgn(v(x", t") - u(x', t'))(f(v(x", t")) -f(u(x', t'))) 

x a (x" - xi, t" - t')j dx" dt" dx' dt' 

+ f [ (x" - x'. O - t')Iv(x",0) - u(x', t')I 
-xR 

- (XI(x - xi, t - t1)|v (x", t - O) - u(x', t') | dx" dx'dat' 
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where S = R x [O, t]. Then, 

|U (t) - v (t) || L'(R) < || U (O) - V (O) 11 L(R) + (26 +1f 11 LipEO) I UO I BV(R) 

r + sup I|V(t' + T) - v(t ) IIL'(R) - Ato E 

tacIT| < 801-t' < T < t- to} 

For most numerical schemes in this paper, -Aeo e will be bounded in such a way 
that the preceding inequality will simplify to 

I|U(t) - v(t) IIL'(R) < 1IU(O) - V(O) IIL'(R) + C(h1/21t 1/2 + h)IU0|BV(R), 

where C is a positive constant. Note that for large t, the error is bounded by 
(th )1/21u01 BV(R); in many important instances this bound is sharp. 

Finite-difference approximations in conservative form for the conservation law 
(C) were introduced by Lax and Wendroff [18]. Explicit conservative schemes have 
the form 

Ui - .. F(Lk U ._* +k)-F(( ik-1 ' * +k-1) =0 

(1.4) At h 
i E Z, n > 0. 

The function F is the numerical flux; the scheme is consistent if F(c, . . . , c) = f (c) 
for all c. Such methods are called monotone if U0, V0 E BV(Z) and Uj? > ViK for 
all i E Z implies that, for all n > 1, (Ji > Jin for all i E Z. 

Harten et al. [12] proved that if the solutions of monotone, consistent, conserva- 
tive-form finite-difference approximations to (C) converge as h -O 0, they converge 
to the entropy solution of (C). Using Theorem 1.2, Kuznetsov [16] proved that 
monotone schemes for (C) converge to the entropy solution in more than one space 
dimension, and he provided suitable error estimates. Later, Crandall and Majda [4] 
proved a similar result without the error estimates; their treatment of the numerical 
entropy condition is more illuminating than Kuznetsov's, however. 

Sanders [22] proved convergence, with error estimates, for certain three-point 
schemes with fixed nonuniform grid spacings. (Sanders' treatment of Kuznetsov's 
theory, although correct in outline, erroneously omits the boundary terms in the 
definition of AEoo.) Douglas [7] and Douglas and Wheeler [9] proved convergence for 
methods for which their nonuniform spatial grid was changed from one time step to 
the next under certain constraints. In a series of papers [17], [24], [25], Kuznetsov 
and Voloshin analyzed schemes similar to those studied here. In comparision with 
our results, their hypotheses are more stringent, and their results are weaker; for 
example, the scheme (1.1), when considered as a three-point scheme, does not satisfy 
Voloshin's definition of an implicit monotone scheme for any positive value of a. 
Because of this, our analysis of (1.1) depends strongly on considering the finite-dif- 
ference operator to have an infinite stencil (or domain of dependence), so that the 
numerical flux F maps BV(Z) into R instead of mapping RW into R. 

We first give some preliminary results and notation. In the second section, the 
convergence theory for the general equation is presented. In the final section, we 
show that discretizations of (S) satisfy the hypotheses of our theorems and we 
discuss the stability of certain difference schemes. 
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The mappings vi on Z, the integers, map j to i + j, with a = a,. An operator A is 
said to commute with translations if A(u(* + y)) = (Au)(. + y). L1J(R), the space 
of all functions u that are integrable on compact subsets of R, may be considered a 
vector lattice, with the natural ordering u > v if u(x) > v(x) for all x E R. Possibly 
nonlinear operators T of a vector lattice to itself that preserve the ordering, so that 
u > v implies that Tu > Tv, are order-preserving, or monotone. (If T is linear, it is 
called positive.) 

We will consider solutions of (S) and (C) that are in BV(Rn), the set of all 
functions on Rn whose first distributional derivatives are bounded measures. The BV 
seminorm of u is given by 

IUIBv(w)=f I n J 

(See Giusti [11].) The BV(R)-norm will be defined as 

IIUIIBV(R)- lim U(X) + I U IBV(R)* 
X --3 -00o 

BV(I), where I is a bounded interval, and BV(R x I) are defined analogously. The 
B V(Z)-seminorm of a function defined on the integers is 

WI| , = E lui- uj 1 | 

2. Convergence Results. Our extension of (1.4) is to solve 

(2.1) U1+ U + 1{Fl(GUn?) + F2(U)-(F(u ) + 2(U)) = , 

for n > 0. where the initial vector U0 is provided in a manner to be described 
below. The vectors Un and Un+'1 are in BV(Z), and the functions F1 and F2 are 
assumed to satisfy the following assumptions, which seem to be necessary to reach 
the conclusions presented in the following theorems; also, to analyze (1.1), it seems 
necessary to consider nonlocal numerical fluxes. We make the following four 
assumptions about the numerical methods in this section. 

ASSUMPTION 1. There are two functions fl, f2: BV(Z) -- R, and constants Li, 
icE Z, such that if U E BV(Z), q E R, and 1 = 1 or 2, then, for every vector ei with 

el= 3;, 

If,(U+ ?qe') -f,(U)I< Lzq, 
and 

Li = L < NO. 
ieZ 

This assumption ensures that the numerical fluxes 11 and f2 are Lipschitz 
continuous in each component, and that the Lipschitz constants are summable at 
infinity. Any local flux of the form (1.4) will automatically satisfy the decay 
condition if it is Lipschitz continuous, because L, = 0 for large enough i. The 
numerical flux fH will be evaluated at the advanced time level, and f2 will be 
evaluated at the current one. 

For I = 1 and 2, define the mappings F,: BV(Z) -- BV(Z) by 

F,(U)i = f,(iU) 
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and the mappings A,: BV(Z) -- L'(Z) by 

A(U) = Fl(GU)-F,(U). 

The L1(Z)-norm of A(U) is bounded by L times the BV(Z)-seminorm of U, for 

|F,(aU) - FI(U)IILI(Z) = E f,(i+1U) -f,(aiU) 
ieZ 

< E, E Lj|Ui+j+ - Ui+j1 
ieZ j e Z 

BV(Z) BV(Z)Y 
jeZ 

Similarly, if U and V are in BV(Z), and U - V E L1(Z), then 

II F (U) )- FJ(V) |IL1(Z) < L||U U- V |L(Z). 
Note that F, and A, commute with translations. 

ASSUMPTION 2. If Ci = c for all i, then 

fM(C) +f2(C) = f(C). 

Thus, the numerical fluxes are consistent with f. 
ASSUMPTION 3. For any U, V E BV(Z) with U - V E L'(Z), 

E (Al(U)i - Al(V)i)sgn(Ui - V) > 0- 
ieZ 

We will show that this condition implies that the solution operator of the implicit 
equation U'7+1 + AtA1(U'+ ')/h = U' is order-preserving on BV(Z). 

ASSUMPTION 4. The mapping 

At 
H2(U) = U - h {F2(U) -F2(U)} 

is order-preserving on BV(Z). 
The following theorem deals with the question of the existence and uniqueness of 

the solution of the system (2.1). 

THEOREM 2.1. If f1, f2, h and At are given such that Assumptions 1 through 4 are 
satisfied, then for any U E B V(Z) there is a unique U* E B V(Z) that satisfies 

(a) (U* - U)/At + {F1(GU*) + F2(GU) - (F1(U*) + F2(U))}/h = 0. 
Furthermore, 

(b) IU |IBV(Z) < IUI BV(Z)' 

(C) 11U* - UIIL1(Z) < 2LAtIUIBv(z)/h, 
(d) iez(U* - U)h = At(f(U-) -f(U+)), where U+= limj-. ii) and U-= 

fim / 1 00 U% 
(e) if Ui > Vi for all i E Z, then UL* > VJ* for all i E Z, and 
(f) for all i E Z, in fi EZ UJ < U* < s5up pi z Uj. 

The following two lemmas are used in the proof of Theorem 2.1. 

LEMMA 2.1 (CRANDALL-TARTAR [5]). If T: L'(Q) -> L'(Q) for some measure space 
(Q, dM) and Jj Tudi = Ju udI, then T is a contraction on L'(Q) if and only if T is 
order-preserving. 
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LEMMA 2.2 [20]. If T maps L1(Z) or L1(R) to itself, preserves the integral, and 
commutes with translations, then T satisfies a maximum and minimum principle, that 
is, 

limsupTu(x) < lim sup u(x), 

and 

liminf Tu(x) > liminf u(x). 
Proof of Theorem 2.1. We will at times use the functional notation H(U) for U*. 

Solutions of (a) will be constructed first for U E L'(Z). 
Rewrite (a) as 

U* + At{ F(caU*) - F1(U*)} = U- At ( U -F 
h ~~~~~~~tF2(aU) 2 U 

or 

U* + + Ah (U*) = U- h A2(U) H2(U). 

Let H1(V) denote the solution operator of 

H1(V) + At 
-F (H(V))-F1(H1(V))} = V. 

Then H(U) = H1 o H2(U). Since Eir= z A1(U)i = G if U e L'(Z), 

E HJ(U)i = E H2(U)i = E Ui- 
ieZ ieZ ieZ 

Thus, H1, H2, and H preserve the integral. Similarly, since A1 and A2 commute 
with translations, H1, H2, and H commute with translations. 

Assumption 3, together with the fact that A1 is continuous, implies that A1 is 
m-accretive on L'(Z) (see [6]), so that the Crandall-Liggett theorem [3] implies that 
H1 exists and is a contraction on L'(Z). By Lemma 2.1, H1 is also order-preserving. 

Because of Assumption 4, H2 is order-preserving. Thus, by Lemma 2.1 again, 
H = H1 o H2 is an order-preserving contraction that preserves the integral and 
commutes with translations. Using these properties, it is easy to show that 

II H(U) IIBV(Z) <' II UIIBV(Z)l 
and Lemma 2.2 then implies that for all i E Z, 

inf UL < H(U)i < sup Uj. 

As for (c), notice that 
IIU*- UIL1z)=At 

11U* - UI|Lj(Z) =h 11 A1(U*) + A2(U) IIL1(Z) 

h L (u U BV(Z) + U lBV(Z)) < 2L 
A 

I U IBV(Z) 

We have now shown that U* exists if U E L1(Z); it remains to show that U* exists 
for any U E BV(Z) with the properties (b) through (f). For any U E BV(Z), let 
un = X[-n n]* U. (Un takes the same values as U inside [-n, n], but is 0 outside this 
interval.) Then Un E L'(Z), IIU"IIL'(z) < 11UILW(z), and IIU"IIBV(Z) < IIUIIBV(Z) + 

211UII L-(Z) independently of n. Thus, as n tends to infinity, H(U") is uniformly 
bounded in BV(Z) and L(Z). Therefore, there is a subsequence of the Un, renamed 
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U'1, and a U* such that H(U') -- U* in Llo<(Z), i.e., uniformly on any bounded 
interval. We omit a series of tedious arguments, which use the fact that the Lipschitz 
constants of fi and f2 are summable, that show that the limiting function U* is 
unique, and satisfies (a) through (f). The argument, which is similar in spirit to the 
proof of Lemma 2.3, may be found in the technical report [19]. 0 

In the sequel we will use the characteristic functions 

x(x t) = I if (x, t) E [(i - 1/2)h, (i + 1/2)h) X [nAt, (n + 1)At) 
{ O otherwise. 

The following theorem is our main result. 

THEOREM 2.2. Let h, At > 0 be such that the ratio At/h = A is fixed. Assume that 

e0 C BV(R), and let f1 and f2 be given such that Assumptions 1 through 4 are 
satisfied. Let Uh = {i} n}t > be defined by 

rr11+1 - Un 1 (2.2) U U + |{ F1(aUn+?1) - F1(Un 1) + F2(aUn) -F2(U )} 0 

Jorn > 0, 
and 

U0 = J(i+1/2)h u0(x)dx 
(i-1/2)h 

Then, for any T > 0, the functions 

Uh = E Lix. 
ieZ 

nAtt< T 

converge to the entropy solution of (C) in L' (R) as h 0. If, in addition, we assume 
that 

(2.3) a |jJL1 = M < 0o, 
je Z 

then for any 0 < t < T, Uh satisfies 

IIUh(t) - u(t) IIL'(R) < C(h +(ht)1'2)IUOIBV(R), 
where u is the entropy solution of (C), and C depends on L, At/h, and M. 

To prove this result, we will use the following lemma. 

LEMMA 2.3. Let f1 andf2 be given such that Assumptions 1 and 2 hold, 

/hI Vhk } kZ'>0 = Vh E=- L10JR X [0, T]), 
keZ 

nAts T 

and let there be a constant C such that for all h, n > 0, 

IVhn B V(Z) + II Vh || LX (Z) < C. 
If Vh V in Llo,(R X [0,T]) as h -. 0, 1= 1 or 2, and 

fh = E FI (V") iXins fh 
h 

ieZ 
nAt < T 

then 

h -f o v in LIONc(R X [0, T ]) as hO0, 
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Proof. Let I be a bounded interval in R, and let K = I x [0, T]. Then 

l/fh - f(v) IIL'(K) < I1fh - f(frh) IIL'(K) + If(fVh) -f(v) IILK). 

The second term on the right vanishes as h tends to zero since f is Lipschitz 
continuous and Vh -- v in L'jOC(R X [0, T]). The first term can be bounded by 

1lfh f (frh) ||1(K) E fE f(a7i(Vh )-f(**V*, V*, ) h/\t 
nAt<T ihMe 

(2.4) < E E ELj I Vh(.+j)- ~ h 
nAtsT ihel IjI<m 

+ E F E L 2|IVh 11Lo(z)hAt. 
nAt T ihel Ijl>m 

For any E > 0, a value of m can be found so that E lil > m Li < E. For that value of m 
the second term of (2.4) is less than 2e11 Vh II L (Z) I IIT. The first term can be bounded 
by 

~ ~ V4~Jn - Vh, I h At ? ?Lj E Vh (i+j)- h h\ 
n7At,<T l jl<m i GZ 

S E 1 j1Lj Fa IVh (i+l)- Vhni |h/\t < I j JlLJ CTh. 
nAt <T ljl<m i eZ 1j1'<m 

The latter bound can be made as small as necessary by picking h small enough. C 
The proof of this lemma yields the following corollary. 

COROLLARY. If Ej ZII jILj < xo, and K = I X [0, TI, then 

IL/h f( v) IIL'(K)1 f IILip 1V Vh L1(K) + (E IILj) I Vh IBV(Z)T h. 0 

Proof of Theorem 2.2. The proof of the first statement of the theorem is similar to 
that in, for example, Crandall and Majda [4], or Sanders [22], and will not be 
repeated here. For example, one uses the bounds (b) and (c) of Theorem 2.1 to show 
that the functions Uh are uniformly bounded in BV(R X [0, T]), hence are precom- 
pact in Ll'(R X [0, T]). Thus, a subsequence converges, as h tends to zero, to a 
function u. Using Lemma 2.3 to handle the nonlinear term, one then proves in the 
usual way that the limit function is a weak solution of (C), and that it satisfies the 
entropy condition (and hence is unique). None of this requires the use of the extra 
hypothesis (2.3). We will focus on the last statement of the theorem. 

Crandall and Majda showed how one naturally gets an approximate (or numeri- 
cal) entropy condition for the numerical method (2.2); we repeat that construction 
here. Extend the mapping H of Theorem 2.1 to a map A taking BV(Z X [0, N]) to 
itself by 

( in = (Un). A =~ H(U 1. 

If C is a constant function in BV(Z X [0, N]), parts (c) and (e) of Theorem 2.1 
imply 

A(U) V A(C) < A(U V C), A(U) A A(C)> A(U A C), and A(C) = C, 
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where a V b = max(a, b) and a A b = min(a, b). The defining relation (2.2) for 
U"?1 then implies that 

(A(U) v C - A(U) A C) -(U v C - U A C) 
At 

(2.5)~ | F, (aA (U v C)) - F, (aA (U A C))] -F, (A(U v C)) - F, (A(U A C))] 
(2.5) ([h [ F2 ((U V C))-F2(9(U A C))]-[ F2(U V C)- F2(U A C)] 

} 

- A(U) v C-A(U v C) A(U) AC-(UA C) < 
At At 

This inequality is a numerical entropy condition, and will be used in the sequel to 
bound the quantity -Aro-. 

For the most part, our proof of the error estimate reproduces the structure of 
Sander's Theorem IV [221. 

Note that, if IIZIILl(R2) = fR2(IoX(X, t)I + Io,(x, t)I) dx dt, then 

(2.6) //w(x + h, t + T) - .(x, t)IIL1(R2) < (|h| + ITI)IIWIIL1(R2) 

(See [22].) 
Following Sanders, for any number g define the vector 

Fg(U") = F1(u"+1 V G) + F2(un V G) -(F1(u"+ A G) + F2(Un A G)), 

where G = (...,g, g, g, ...). We also define the real-valued function FJ(w) = 

sgn(w - g)(f(w) - f(g)) and the difference operators A+ V." = Vj"' - V" and 
A+ v =- vn + 

V 
x j -j+l j 

The conditions of Theorem 1.2 need to be verified. The approximation Uh can 
obviously be taken to be right continuous, and Theorem 2.1 shows that 

sup IJUh(t + T) - Uh(t) IIL1(R) < 2L(eO + ?\t)lUOIBV(R)- 
{t',TI <8EoI-t'<T<t-t'} 

Also, I/U0 - u011 L'(R) < hIu0I BV(R)' Therefore, it is necessary only to bound -Ae0o-e 
when v = Uh. We assume t = NA t. 

Because Uh is piecewise constant, -A"to ' equals 

fR [ ___ J f [f U" - U(x', t)" - t t) 
jeZ 

+Fu(x ,t,)(U) ax /o(Xf" - x', t"- t') dx" dt" dx' dt' 

-f E J(J l/2)h[ Uj - U(X, t) jW(x" -x',O - t') 
Rx[Ot] j (j-1/2)h 

- UNN- 
_U(X', 

t') (x"-x', t -t') dx"dx'dt' 

where I, = ((j - 1/2)h, (j + 1/2)h) X (tn, tn+'). Because of the special form of 
w, summing by parts and applying the integral version of the mean-value theorem 
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transforms this integral to 
N-1 

IR [ ? |A + IUjil-UW O( tW )|(t - X, ,tn1 - t )h 

jEZ 

+A x+FU(X r (U") (Xj+ -x', T - t)] At dx'dt' 

|J ~ J 1/2)h[ 
UjN - u(x' t)| 

RX[O:] j (J -1/2)h 

-(U[Ni - U(X', t') (X - x', t - t') dx"dx'dt' 

for some ((j, Tr") E Ij. By Theorem 2.1, the boundary term is less than 2LAtIuOIBV(R). 
Adding and subtracting hA +LUn - u(x', t')IW(xj+1 - x', Tn - t') in each term of 
the first sum yields 

|R ?[O] h[LI, | Un - u(x', t') |(W( - x', t1 - t') 
jEZ 

-W) ( Xj+ X', T - t'))] dx'dt' 

(2.7) N-1 

+ A+ juj 
n 

-u(x', t') Ih RX [O: ] ?=0O 
jEZ 

+Ax+FU(X')(Uj~n)At] (xj+ 1 - X', -t') dx'dt'. 

The triangle inequality bounds the first of the two terms of the sum by 

N -1 
I A + Uj," IhJ | - x', tt+1 - t') - W(xj+1 - X', Tn - t') dx'dt'; 

je Z 

by part (c) of Theorem 2.1 and inequality (2.6), this term can now be bounded by 

LIuOIBV(R)(t + h) - 2hIIwIIP(R2). 

To bound the second term, add and subtract +PFU(xU(, )(Un)jW(xj+l - x', Tn - _t) 

in each term in the sum. The second part of (2.7) then becomes 

N -1 
IRx[Ot] ? U(X' t') |h 

je Z 

+ A+P F(,,(U) At| W ( Xj+1xT dx' dt' 
(2.8) 1 x1 

+ | ? AtAx+(FU(X", )(Un" 
RX[O,] )U=o 

jeZ 

-~~~~~~ FUX,,U)j (jlx', Tin- t') dx'dt'. 
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The numerical entropy condition (2.5) shows that the first term above is nonpositive. 
The second term of (2.8) can be bounded by 

N-1 

AtIFU",,)(Un)-)X )(U)J 
Rx[0:] 11=0 

jE Z 

*(Xj+ - X',T -t')-W(x1-x', ' _ t') I dx'dt' 
N-i 

< 2hIIWIIM (R2) ? AtI Fg(Ujn)-tg(U")j 
11=0 
, e Z 

for any g. To complete the theorem, one must show that there exists a constant K, 
independent of h, At, and n such that 

(2.9) ? |g(U")jFg(Lj ) |KIUoIBV(R)v 
jeZ 

Let us examine the first of the four constituent parts in the definition of Fg- 
Lemma 2.3, its following corollary, and Assumption 2 yield 

I F2(Un VGjf2( ....Ujn V g UlfV ,..) 

< MjUn V GIBV(Z) < MIU0IBV(R). 

The additional use of part (c) of Theorem 2.1 yields 

? |F1(U V G)- fl(Un V g) 
1eZ 

< ? |Fln+1 V -fl(...,ujnl gj'+l V g,un)| 
je Z 

+ ? IM j .( un+lvgun1+ vg )-fl( ,UjnV gUn vg,) 
1eZ 

2 L h ip + M)I Uo IBV(R) 

The other two terms can be handled similarly. Summing the four inequalities for the 
four parts of F yields (2.9). 

We have bounded -Ae,?oe by (Clh + C2At)I1oIBV(R)I1WIIL (R2). Since IIWIIL (R2) < 

C(E6' + e'l), the theorem follows by setting E = = h1/2. E0 
Numerical evidence suggests that the inequality (2.3) is necessary to obtain a 

convergence rate of order h'l2. Consider the linear problem 
u, + ux = 0, x E R. t > O, 

u(xO) = X[O oo)(X), x e R, 

and numerical fluxes fl(U) = 0 and 

f2(U) = Cl ljl- UP 
j<O 

where Cl is chosen so that the method is consistent. If At/h is chosen so that a 
Courant-Friedrichs-Lewy condition holds (see the next section), then this method 
satisfies Assumptions 1 through 4, but not (2.3). When this method is implemented, 
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a convergence rate of about h173 is observed. Thus, it seems that numerical methods 
that satisfy Assumptions 1 through 4 but do not satisfy (2.3) have the dubious 
distinction of being the methods that converge to the entropy solution of the 
conservation law (C) with the slowest known rates of convergence. 

3. Dispersive Numerical Approximations to Conservation Laws. We now present 
the finite-difference approximations for (C) that motivated the previous analysis. 
These are modeled on the Sobolev-type equation 

(S) U, + f ( u), x - vg( u), xx, - a2uXX, = 0, x E- R. t > 0, 
u(x,0) = uO(X), x E R. 

This equation, regularizing (C) by incorporating a dispersive term (-a2 UXt) as well 
as a term simulating nonlinear dissipation (-vg(u)xJ), has been used to model the 
passage of small-amplitude shallow-water waves (see Benjamin et al. [1] and Bona et 
al. [2]). The value of (S) as a regularization of (C) is studied in another paper [20]. 
The numerical schemes based on (S) are very similar to those used by Douglas et al. 
[8]. 

We will use the following notation. W = { JIV }7nejONI denotes a function defined 
on Z x [0, N], where N is fixed. The value of the function W for the nth time step 
will be denoted by W.= {W7 1iEZz If h and At are two fixed positive numbers, 
define the divided differences 

d Wn = Wn 1 - Win 

d2Wn = Wi- 2J- + W7+1 Wn - Wi 
dX I h 2 9 ~and d~J At 

The two specific difference schemes to be considered here are the method using 
forward differencing in time, 
(3.1a) (1 - a2d )dtLI + dxf(Un), - vd2g(Un), = 0, n > 0, i E 

and the backward-difference method, 
(3.lb) (1 - ? d )d i + dxf( Un+)1 - Vd2g(Un(l) i ?, n > 0, iE Z. 

Each method uses the same initial value 

U0 = f(i+1/2)h U0(x)dx 
( i-1/2)h 

where u0 is given in (C). (Any initial data such that U0 -> u0 in L'(R) and U 01 BV(Z) 
is bounded as h -, 0 would suffice.) These equations can be viewed as discretizations 
of (S) using centered differences in space and either forward or backward differences 
in time. 

These schemes can also be interpreted as "averaged" difference methods. We start 
with a centered-difference approximation to f(u)x and add a second-order dissipa- 
tive term -vd 2g(u) for stability. Before these values are used as the time difference 
of u, however, they are averaged using the operator (1 - a2d )21. This is similar to a 
scheme used by A. Jameson to calculate steady-state solutions of the Euler equations 
for gas dynamics [14]. 

We first write these methods as d, I} + A(U ),/h = 0, or dl, I + A(Un+ 1)/h = 

0. Note that the discrete-difference operator 1 - a2d 2 may be inverted on Z, subject 
to boundedness at infinity, by discrete convolution with the function M,(-i) = aKl1l. 
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If r = a/h, then 

K 1 +2r- V1 + 4r 
K= 2r2 

the smaller root of the equation r2K2 - (1 - 2r2)K + r2 = 0, and a = 

(1 + 4r2)-1/2. Performing the inversion yields, in the forward-difference case, 

(3.2a) dtUi1 = a a KV-' ""{-djf(Un) + vd 2g(Un)} 

(3.2b) = a E K~l~i(fi(Ul1) +f(Ul) + 2 (/_-(uln)}) 

-a a K lit ( / ((Un ) + f (Un) + g(U)n g(Un) 

(3.2c) = a A K Ii (sgn(i - - + Ig((/I)} 

-v(1 - a) 

Formula (3.2b) is a simple rewriting of (3.2a). Formula (3.2c) is derived by gathering 
all terms depending on U/n in one place (or by summation by parts). 

Call the operator on the right-hand side of (3.2) -A(U)/h. This A corresponds to 
A1 and A2 of the previous section. We now claim that under certain restrictions on 
a, g, h, and if t the operator A fulfills Assumptions 1 through 4. 

For / = 1 (the implicit case) and / = 2 (the explicit case), let 

f1(U) = a E K iI (L 1)2+ ( ) + g( 1)- )) 

The function fS satisfies Assumption 1 with 

L.= a(IKI' +IKIIi?1I){ Ill ip + VI IgILP}) 

for i E Z, provided that the ratios al/h and v/h are fixed as h tends to zero. The 
function fS will then be independent of h, and will satisfy Assumption 1. It also 
satisfies the extra assumption (2.3) of Theorem 2.2. 

As for Assumption 2, 

since aY2 E z K"' 2 = 1. 
The following theorem delineates when Assumptions 3 and 4 hold. 

THEOREM 3.1. Assume that l and g are Lipschitz continuous. The mapping H(U) = 

U - ifA (U )/h is order-preserving on B V(Z) if and only if 
(1) the function 

(3.3) A t(- - a)) 

a2 
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is nondecreasing on R (a Courant-Friedrichs-Lewy condition [21]), and 
(2) the functions 

(3.4) vg() - + a2 f 
M 

are nondecreasing on R. 
The mapping A of (3.2) satisfies Assumption 3 if and only if (2) holds. 

Proof. Clearly, the mapping H(U) is order-preserving if and only if H(U)i is a 
nondecreasing function of Uj for every j. Using expression (3.2c) for -A(U)/h, 
we see that H(U)i is a nondecreasing function of U. if and only if - 

vrt(1 - a)g(t)/a2 is nondecreasing on R, which is condition (1). For j i 
H(U)i is a nondecreasing function of Uj if and only if the functions 

g( ) (1 _ 
f___ 

(3.5) v 2-(K K 2h 

are nondecreasing on R, the sign depending on sgn(i - j). Condition (2) may be 
derived from (3.5) by using the definition of K. 

We now prove the last claim. For any U, V E BV(Z), with U - VE Le(Z), 
multiplying (3.2c) by sgn(Ui - Vi) gives 

(A(U) - A(V))isgn(Ui - V;) 

(3.6) > -has KI"I sgn(i - ')( -K K)f I)hf(VI) + Vg(J') g( ') 

+ v 2 |1g(Ui) -g(Vi) 1- 

Since U - V is in L1(Z), both terms of the right-hand side of (3.6) are in L1(Z). Sum 
(3.6) over i E Z and change the order of summation. Since aY2'1 K' = (1 - a)/2, 
this yields 

E (A (U) -A (V))isgn(U, -V,) 
ieZ 

+ 1 - a~h f (U f(I g(U,) - g(Vi) 

2 J| ( Ka)2h 

(3.7) + ( f(UK ) f(VIf()) + g( U)g( ] (V,) 

?(1-=a) hv 9(t) - 9(n) 

Because of condition (2), for any E, = e R, 

1 1 AO 
_ 

An) g_ 
- gel)) 

~{ -k -Kf()f ) + 

+ (k-Kf( _Af() ~g(O &g(ni)} 

_ IgM~ - g(n) 1 
a2 
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and so 

E (A(U) - A(V))isgn(Ui - V/) > 0. 
iEZ 

Thus, A satisfies Assumption 3. 
If (2) does not hold, then there is an q > such that one of 

(-( K ) 2h a2 )((K )2h a2) 

If U0 = ijeo, V0 = (e0, U1 = U0 - zAtA(U0)/h, and V1 is defined similarly, a 
direct calculation shows that 

VI - UI IIL1(Z) >- 1 U0 - V ||L1(Z) + Cz~t8, 

for some C. 
Since A is Lipschitz continuous on L1(Z), there exists another constant C such 

that, if U0 = U1 + AtA(Ul)/h, then 

|U0 - U IIL'(Z) < C L A Lip U LI(Z' t 

Hence, for some value of A\t, we have 

||U - VI IIL(Z) > 11 - 
O 

IIL'(Z) 

Therefore, the solution operator of the backward-difference equation is not a 
contraction on L1(Z), so the mapping A does not fulfill Assumption 3. E 

When f and g are differentiable, (3.4) is equivalent to 

(3 .8) vg(( 4 I2 a2 )/I f '(t ) I for all ( E- R. 

When h is 0, this condition is necessary and sufficient for the differential equation 

Ut +f(u), - vg(u),,- = 0 

to satisfy a maximum principle (see [20]). When a is 0, (3.8) reduces to 

(3.9) Vg'(M _> 2hIf U) 11 

which is the necessary and sufficient condition for the solution operator of the 
difference equation 

(3.10) d Un + dxf (UP1?) - vd 2g(Un+l) = 0 

to be order-preserving (cf. Douglas [7] and Crandall and Majda [4]). 
For a given level of dispersion and a given transport term f, the inequality (3.8) 

may be used to find a function g such that the equation (3.2) has the least amount of 
artificial diffusion necessary for Assumptions 1 through 4 to hold. In this case 

Vg'( ) = I+ a2 )| If () I 

With this g, if f is nondecreasing, then i +1 - U d1.pends only on the value of L)' 
for j < i; that is, it is a one-sided, upwind, difference method. It is in this sense that 
we call the methods investigated here generalized upwind-difference methods. We 
note that the generalized upwind-difference scheme of Engquist and Osher [10] can 
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be characterized as the scheme of the form (3.10) with the least amount of 
dissipation necessary for stability. 

If g is chosen so that equality holds in (3.8), then condition (3.3) is equivalent to 

(3.11) 1 MO I -A -< ( + a ) + 1 

Larger time steps may be taken whenever a is positive. The effective width of the 
kernel M,, is of order r = a/h meshpoints. Equation (3.11) can be interpreted as 
saying that A\t may be increased so long as the characteristics coming into the point 
(ih, (n + 1)At) start within the effective width of the spatial-difference operator 
centered at (ih, nAt). 

Douglas et al. [8] have pointed out that an implicit finite-element method based 
on the regularization (S) may be used to approximate (C). Define the space 
Mh = {v E CO(R)Iv I [ih,(i+ I)h] is a linear function) n L2(R) and the inner product 
(V, W) = JRv(x)w(x) dx. We look for a sequence of functions { w0, w1 .... } such that 
for all v E Mh 

(W 
- 

- a -(f (Wn), vx) + V (g(wn) x, Vx) + a 2( W - W ) 
=. 

Here wo is some suitably chosen initial value. If the integrals are evaluated with the 
trapezoid rule, then the algebraic equations to be solved are exactly of the form 
(3.2b), with 

2 2 2 
a finite element a finite difference + h 

As they note in [8], the introduction of explicit dispersion unifies the finite-difference 
and finite-element approach to the problem. For the solution operator of the 
finite-element problem to be a contraction in L1(R) and satisfy a maximum 
principle, it is necessary that a2> 2 h2, so that the corresponding finite-difference 

a2 is positive, and 

vg'(t) > ( 

1#h2 

+ 

a2)1/2If() 

I 

for all ( E R. This may be compared with (3.8) and (3.9). If these conditions are 
satisfied, then the finite-element methods fall into the class of methods studied in 
this paper. 

Requirement (3.8) depends on the level of dispersion a and the discretization 
parameter h only through the combination h 2/4 + a2. If the dispersion and 
discretization are altered, but this expression remains fixed, then the same amount of 
dissipation is necessary for stability. In this sense, the effects of spatial discretization 
and artificial dispersion are interchangeable when "working against" a maximum 
principle. Thus, we may be led to the view that condition (3.9) is required by the 
dispersion introduced by discretizing the purely dissipative equation 

Ut + f (u) - vg(u) xX = 0 

to obtain (3.10). Trefethen [23] has written a survey on the effects of dispersion on 
numerical schemes. 
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This view may be investigated further by considering formally the following 
difference problem, which is continuous in time: 

1 tu(x, t) + f(u(x + ht)) -f(u(x - h, t)) 
(3.12) dt2h 

( ) ~~~~~g(u(x - h, t)) - 2g(u(x, t)) + g(u(x + h, t)) = O 
h2 

Here it is assumed that f and g are smooth, that v/h is fixed, and that there is a 
smooth solution u of (3.12). We follow the lead of many others in expanding f(u) 
and g( u) in terms of their Taylor series expansions about x to yield 

u + f(u)x - vg(u)xx + 6 f(u)XXX = 0 

to order h3. From this equation, ut = -f(u)x + 0(h), so that, again to order h3, 

ut + f(u)X - vg(u)XX - 6 xxt = 0. 

This partial differential equation, called a modified equation [13] is associated 
naturally with the finite-difference equation (3.12). It is a differential equation 
modeling a difference equation. It is also a Sobolev equation of the type introduced 
and studied in [20]. For the solutions of this equation to satisfy a maximum 
principle, it is necessary and sufficient that for all ( E R 

vg'(0) > h If '(0) I 

This inequality, although not exactly the same as (3.9), is so similar that it might 
explain heuristically why a condition such as (3.9) is necessary for the solutions of 
the finite-difference method (3.10) to satisfy a maximum principle. 
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